Robust Attitude Control of Spacecraft Simulator with External Disturbances
نویسندگان
چکیده مقاله:
The spacecraft simulator robust control through H∞-based linear matrix inequality (LMI) and robust adaptive method is implemented. The spacecraft attitude control subsystem simulator consists of a platform, an air-bearing and a set of four reaction wheels. This set up provides a free real-time three degree of freedom rotation. Spacecraft simulators are applied in upgrading and checking the control algorithms' performance in the real space conditions. The LMI controller is designed, through linearized model. The robust adaptive controller is designed based on nonlinear dynamics in order to overcome a broader range of model uncertainties. The stability of robust adaptive controller is analysed through Lyapunov theorem. Based on these two methods, a series of the laboratory and computer simulation are made. The tests’ results indicate the accuracy and validity of these designed controllers in the experimental tests. It is observed that, these controllers match the computer simulation results. The spacecraft attitude is converged in a limited time. The laboratory test results indicate the controller ability in composed uncertainty conditions (existence of disturbances, uncertainty and sensor noise).
منابع مشابه
Robust Attitude Control for Quadrotors with External Disturbances
This study investigates a design procedure for a robust nonlinear control algorithm based on sliding mode control (SMC) to stabilize the attitude of a 3-DOF quadrotor UAV subject to external disturbances. Since traditional sliding mode controllers are sensitive against external disturbances in the reaching phase, a new algorithm is proposed to enhance the robust performance of an SMC strategy. ...
متن کاملNonlinear Robust Control for Spacecraft Attitude
This paper proposed a nonlinear robust control for spacecraft attitude based on passivity and disturbance suppression vector. The spacecraft model was described using quaternion. The control law introduced the suppression vector of external disturbances and had no information related to the system parameters. The desired performance of spacecraft attitude control could be achieved using the des...
متن کاملThe Distributed Spacecraft Attitude Control System Simulator: Development, Progress, Plans
Virginia Tech has developed a testbed comprised of two independent spherical air-bearing platforms for formation flying attitude control simulation, the Distributed Spacecraft Attitude Control System Simulator (DSACSS). The DSACSS provides the flexibility to experimentally implement many types of control techniques. Novel individual platform control options include nonlinear compensation of an ...
متن کاملAttitude Control Investigation Using Spacecraft Hardware-in-the-loop Simulator
The Distributed Spacecraft Attitude Control System Simulator (DSACSS) testbed at Virginia Polytechnic Institute and State University facilitates investigation of various control strategies for single and multiple spacecraft. DSACSS is comprised of two independent hardware-in-the-loop simulators and one software spacecraft simulator. The two hardware-in-theloop spacecraft simulators have similar...
متن کاملNonlinear Predictive Attitude Control of Spacecraft under External Disturbance
Predictive control technique is applied to the three-axis attitude control of spacecraft. The principal idea of predictive control is to construct a priori reference trajectory and build control command so that the actual system follows the reference trajectory. In the case of this study, the controlled variables are the quaternion attitude parameters and angular rates of spacecraft body axes. ...
متن کاملAlmost Global Robust Attitude Tracking Control of Spacecraft in Gravity
In this paper, we treat the practical problem of tracking the attitude and angular velocity of a spacecraft in the presence of gravity and disturbance moments. Autonomous trajectory tracking is a practical problem for robotic spacecraft, as well as autonomous aerial and ground vehicles. The approach used here achieves near global stable trajectory tracking by using a globally defined dynamics m...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 30 شماره 4
صفحات 567- 574
تاریخ انتشار 2017-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023